Struktur Data Antrian Edaran

Dalam tutorial ini, Anda akan mempelajari apa itu antrian melingkar. Juga, Anda akan menemukan implementasi antrian melingkar di C, C ++, Java dan Python.

Antrian melingkar menghindari pemborosan ruang dalam implementasi antrian biasa menggunakan array.

Batasan Antrian reguler

Seperti yang Anda lihat pada gambar di atas, setelah sedikit antrean dan antrean, ukuran antrean telah dikurangi.

Indeks 0 dan 1 hanya dapat digunakan setelah antrian disetel ulang ketika semua elemen telah di-dequeued.

Cara Kerja Antrian Sirkuler

Circular Queue bekerja dengan proses circular increment, yaitu ketika kita mencoba menaikkan pointer dan mencapai akhir antrian, kita mulai dari awal antrian.

Di sini, kenaikan melingkar dilakukan dengan pembagian modulo dengan ukuran antrian. Itu adalah,

 jika BELAKANG + 1 == 5 (meluap!), BELAKANG = (BELAKANG + 1)% 5 = 0 (awal antrian)
Representasi antrian melingkar

Operasi Antrian Sirkuler

Antrian melingkar bekerja sebagai berikut:

  • dua petunjuk DEPAN dan BELAKANG
  • DEPAN melacak elemen pertama antrian
  • BELAKANG melacak elemen terakhir dari antrian
  • awalnya, setel nilai FRONT dan REAR menjadi -1

1. Operasi Enqueue

  • periksa apakah antriannya penuh
  • untuk elemen pertama, setel nilai FRONT ke 0
  • secara melingkar meningkatkan indeks REAR sebanyak 1 (yaitu jika bagian belakang mencapai ujung, selanjutnya akan berada di awal antrian)
  • tambahkan elemen baru pada posisi yang ditunjukkan oleh REAR

2. Operasi Dequeue

  • periksa apakah antrian kosong
  • mengembalikan nilai yang ditunjukkan oleh FRONT
  • naikkan indeks FRONT sebesar 1 secara melingkar
  • untuk elemen terakhir, setel ulang nilai FRONT dan REAR ke -1

Namun, pemeriksaan antrian penuh memiliki kasus tambahan baru:

  • Kasus 1: FRONT = 0 && REAR == SIZE - 1
  • Kasus 2: FRONT = REAR + 1

Kasus kedua terjadi ketika REAR dimulai dari 0 karena kenaikan melingkar dan ketika nilainya hanya 1 kurang dari FRONT, antrian penuh.

Operasi Enque dan Deque

Implementasi Antrian Sirkuler dengan Python, Java, C, dan C ++

Implementasi antrian yang paling umum adalah menggunakan array, tetapi juga dapat diimplementasikan dengan menggunakan daftar.

Python Java C C +
 # Circular Queue implementation in Python class MyCircularQueue(): def __init__(self, k): self.k = k self.queue = (None) * k self.head = self.tail = -1 # Insert an element into the circular queue def enqueue(self, data): if ((self.tail + 1) % self.k == self.head): print("The circular queue is full") elif (self.head == -1): self.head = 0 self.tail = 0 self.queue(self.tail) = data else: self.tail = (self.tail + 1) % self.k self.queue(self.tail) = data # Delete an element from the circular queue def dequeue(self): if (self.head == -1): print("The circular queue is empty") elif (self.head == self.tail): temp = self.queue(self.head) self.head = -1 self.tail = -1 return temp else: temp = self.queue(self.head) self.head = (self.head + 1) % self.k return temp def printCQueue(self): if(self.head == -1): print("No element in the circular queue") elif (self.tail>= self.head): for i in range(self.head, self.tail + 1): print(self.queue(i), end=" ") print() else: for i in range(self.head, self.k): print(self.queue(i), end=" ") for i in range(0, self.tail + 1): print(self.queue(i), end=" ") print() # Your MyCircularQueue object will be instantiated and called as such: obj = MyCircularQueue(5) obj.enqueue(1) obj.enqueue(2) obj.enqueue(3) obj.enqueue(4) obj.enqueue(5) print("Initial queue") obj.printCQueue() obj.dequeue() print("After removing an element from the queue") obj.printCQueue() 
 // Circular Queue implementation in Java public class CQueue ( int SIZE = 5; // Size of Circular Queue int front, rear; int items() = new int(SIZE); CQueue() ( front = -1; rear = -1; ) // Check if the queue is full boolean isFull() ( if (front == 0 && rear == SIZE - 1) ( return true; ) if (front == rear + 1) ( return true; ) return false; ) // Check if the queue is empty boolean isEmpty() ( if (front == -1) return true; else return false; ) // Adding an element void enQueue(int element) ( if (isFull()) ( System.out.println("Queue is full"); ) else ( if (front == -1) front = 0; rear = (rear + 1) % SIZE; items(rear) = element; System.out.println("Inserted " + element); ) ) // Removing an element int deQueue() ( int element; if (isEmpty()) ( System.out.println("Queue is empty"); return (-1); ) else ( element = items(front); if (front == rear) ( front = -1; rear = -1; ) /* Q has only one element, so we reset the queue after deleting it. */ else ( front = (front + 1) % SIZE; ) return (element); ) ) void display() ( /* Function to display status of Circular Queue */ int i; if (isEmpty()) ( System.out.println("Empty Queue"); ) else ( System.out.println("Front -> " + front); System.out.println("Items -> "); for (i = front; i != rear; i = (i + 1) % SIZE) System.out.print(items(i) + " "); System.out.println(items(i)); System.out.println("Rear -> " + rear); ) ) public static void main(String() args) ( CQueue q = new CQueue(); // Fails because front = -1 q.deQueue(); q.enQueue(1); q.enQueue(2); q.enQueue(3); q.enQueue(4); q.enQueue(5); // Fails to enqueue because front == 0 && rear == SIZE - 1 q.enQueue(6); q.display(); int elem = q.deQueue(); if (elem != -1) ( System.out.println("Deleted Element is " + elem); ) q.display(); q.enQueue(7); q.display(); // Fails to enqueue because front == rear + 1 q.enQueue(8); ) )
 // Circular Queue implementation in C #include #define SIZE 5 int items(SIZE); int front = -1, rear = -1; // Check if the queue is full int isFull() ( if ((front == rear + 1) || (front == 0 && rear == SIZE - 1)) return 1; return 0; ) // Check if the queue is empty int isEmpty() ( if (front == -1) return 1; return 0; ) // Adding an element void enQueue(int element) ( if (isFull()) printf(" Queue is full!! "); else ( if (front == -1) front = 0; rear = (rear + 1) % SIZE; items(rear) = element; printf(" Inserted -> %d", element); ) ) // Removing an element int deQueue() ( int element; if (isEmpty()) ( printf(" Queue is empty !! "); return (-1); ) else ( element = items(front); if (front == rear) ( front = -1; rear = -1; ) // Q has only one element, so we reset the // queue after dequeing it. ? else ( front = (front + 1) % SIZE; ) printf(" Deleted element -> %d ", element); return (element); ) ) // Display the queue void display() ( int i; if (isEmpty()) printf(" Empty Queue"); else ( printf(" Front -> %d ", front); printf(" Items -> "); for (i = front; i != rear; i = (i + 1) % SIZE) ( printf("%d ", items(i)); ) printf("%d ", items(i)); printf(" Rear -> %d ", rear); ) ) int main() ( // Fails because front = -1 deQueue(); enQueue(1); enQueue(2); enQueue(3); enQueue(4); enQueue(5); // Fails to enqueue because front == 0 && rear == SIZE - 1 enQueue(6); display(); deQueue(); display(); enQueue(7); display(); // Fails to enqueue because front == rear + 1 enQueue(8); return 0; )
 // Circular Queue implementation in C++ #include #define SIZE 5 /* Size of Circular Queue */ using namespace std; class Queue ( private: int items(SIZE), front, rear; public: Queue() ( front = -1; rear = -1; ) // Check if the queue is full bool isFull() ( if (front == 0 && rear == SIZE - 1) ( return true; ) if (front == rear + 1) ( return true; ) return false; ) // Check if the queue is empty bool isEmpty() ( if (front == -1) return true; else return false; ) // Adding an element void enQueue(int element) ( if (isFull()) ( cout << "Queue is full"; ) else ( if (front == -1) front = 0; rear = (rear + 1) % SIZE; items(rear) = element; cout << endl << "Inserted " << element << endl; ) ) // Removing an element int deQueue() ( int element; if (isEmpty()) ( cout << "Queue is empty" << endl; return (-1); ) else ( element = items(front); if (front == rear) ( front = -1; rear = -1; ) // Q has only one element, // so we reset the queue after deleting it. else ( front = (front + 1) % SIZE; ) return (element); ) ) void display() ( // Function to display status of Circular Queue int i; if (isEmpty()) ( cout << endl << "Empty Queue" << endl; ) else ( cout < " << front; cout << endl < "; for (i = front; i != rear; i = (i + 1) % SIZE) cout << items(i); cout << items(i); cout << endl < " << rear; ) ) ); int main() ( Queue q; // Fails because front = -1 q.deQueue(); q.enQueue(1); q.enQueue(2); q.enQueue(3); q.enQueue(4); q.enQueue(5); // Fails to enqueue because front == 0 && rear == SIZE - 1 q.enQueue(6); q.display(); int elem = q.deQueue(); if (elem != -1) cout << endl << "Deleted Element is " << elem; q.display(); q.enQueue(7); q.display(); // Fails to enqueue because front == rear + 1 q.enQueue(8); return 0; )

Analisis Kompleksitas Antrian Edaran

Kompleksitas operasi enqueue dan dequeue dari antrian melingkar adalah O (1) untuk (implementasi array).

Penerapan Circular Queue

  • Penjadwalan CPU
  • Manajemen memori
  • Manajemen Lalu Lintas

Artikel yang menarik...