Dalam program ini, Anda akan belajar mencari semua akar persamaan kuadrat dan mencetaknya menggunakan format () di Java.
Untuk memahami contoh ini, Anda harus memiliki pengetahuan tentang topik pemrograman Java berikut:
- Pernyataan Java if… else
- Java Math sqrt ()
Bentuk standar persamaan kuadrat adalah:
ax2 + bx + c = 0
Di sini, a, b, dan c adalah bilangan real dan a tidak boleh sama dengan 0.
Kita dapat menghitung akar kuadrat dengan menggunakan rumus:
x = (-b ± √(b2-4ac)) / (2a)
The ±
tanda menunjukkan bahwa akan ada dua akar:
root1 = (-b + √(b2-4ac)) / (2a) root1 = (-b - √(b2-4ac)) / (2a)
Istilah tersebut dikenal sebagai determinan dari persamaan kuadrat. Ini menentukan sifat akar. Itu adalah,b2-4ac
- jika determinan> 0 , akar adalah nyata dan berbeda
- jika determinan == 0 , akar adalah nyata dan sama
- jika determinan <0 , akar kompleks kompleks dan berbeda
Contoh: Program Java untuk Menemukan Akar dari Persamaan Kuadrat
public class Main ( public static void main(String() args) ( // value a, b, and c double a = 2.3, b = 4, c = 5.6; double root1, root2; // calculate the determinant (b2 - 4ac) double determinant = b * b - 4 * a * c; // check if determinant is greater than 0 if (determinant> 0) ( // two real and distinct roots root1 = (-b + Math.sqrt(determinant)) / (2 * a); root2 = (-b - Math.sqrt(determinant)) / (2 * a); System.out.format("root1 = %.2f and root2 = %.2f", root1, root2); ) // check if determinant is equal to 0 else if (determinant == 0) ( // two real and equal roots // determinant is equal to 0 // so -b + 0 == -b root1 = root2 = -b / (2 * a); System.out.format("root1 = root2 = %.2f;", root1); ) // if determinant is less than zero else ( // roots are complex number and distinct double real = -b / (2 * a); double imaginary = Math.sqrt(-determinant) / (2 * a); System.out.format("root1 = %.2f+%.2fi", real, imaginary); System.out.format("root2 = %.2f-%.2fi", real, imaginary); ) ) )
Keluaran
root1 = -0.87 + 1.30i dan root2 = -0.87-1.30i
Pada program di atas, koefisien a, b, dan c masing-masing ditetapkan menjadi 2,3, 4, dan 5,6. Kemudian, determinant
dihitung sebagai .b2
- 4ac
Berdasarkan nilai determinannya, akarnya dihitung seperti yang diberikan dalam rumus di atas. Perhatikan bahwa kita telah menggunakan fungsi perpustakaan Math.sqrt()
untuk menghitung akar kuadrat dari sebuah angka.
Kami telah menggunakan format()
metode untuk mencetak akar yang dihitung.
The format()
fungsi juga dapat diganti dengan printf()
sebagai:
System.out.printf("root1 = root2 = %.2f;", root1);